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THE ZONE OF SUPERSONIC FLOW CAUSED BY LARGE 
METEORITES STRIKING THE LUNAR SURFACE 

k 

by 

M. P. Batra 

The zone a t  the supersonic f l o w  caused by-the large 

meteorite s t r ik ing  the lunar surface has been computed. W e  

have applied the blast-wave theory, u t i l i z ing  the self sim- 

i l a r i t y  technique, f o r  solving the equations of the Fluid- 

Mechanical model. The penetration of the meteorite t o  the 

depth when its velocity becomes acoustic has been found t o  

be equal t o  4 t o  6 meteorite diameters, depending upon the 

impact velocity and the mass of the meteorite. 

the prediction made by Baldwin for  the penetration of the 

meteorite i n  the formation of craters w i t h  Oentral Mountain 

peak. 

depth'. The sonic-crater depth also happens t o  be approxi- 

mately equal t o  the depth of Cent ra l  Mountain peak from the 

l eve l  ground. 

ferent  velocit ies,  d i f f e r e n t  masses and d i f fe ren t  substances 

using B j o r k ' s  scaling laws.  

been scaled fo r  iron and t u f f ,  agrees f a i r l y  w e l l  with that 

computed by B j o r k  for  the meteor crater Arizona. 

a l so  confirmed the 2/3 power l a w  of Eichelberger & Gehrincr. 

This confirms 

This l i m i t  of penetration is called the 'sonic-crater 

The sonic-crater depths can be scaled fo r  dif-  

The sonic depth, after having 

W e  have 
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Introduction 
~~ 

G i l b e r t  (1893) and Gifford (1929, 1930) pioneered the 

idea of the formation of lunar c ra te rs  by the explosions asso- 

ciated with the impact of large meteorites. Baldwin (1949) 

has produced experimental evidence t o  support the impact theory, 

Preliminary estimates of the impact phenomenon w e r e  made by 

Gilvarry and H i l l  (1956) who showed t h a t  the pressures and tern- 

peratures did indeed reach explosion magnitude, Thus shock 

wave must be produced. 

For simplicity, the lunar surface and the meteorite 

w e r e  supposed to  be composed of the same substance. 

t h e t i c a l  element "averagium" w a s  defined (Gilvarry and H i l l  

1956) by determining the average atomic number of elements, 

A hypo- 

weighted by t h e i r  gross re la t ive abundance by mass over the 

silicate, sulphide, and m e t a l  phases of meteorites. The 

atomic number of "averagiumtl w a s  found t o  be 18.5 from the data 

of Brawn (1949). Then the impact of an averagium meteorite 

on an averagium surface was considered. 
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Theory 

The meteoritic impact ve loc i t ies  range from 15 km/sec 

t o  75 Wsec and the masses to vary from lo4  t o  1014 kgm 

(Hawkins 1963). 

of the order of megabars which are far greater than the shear 

strengths of the materials, so t h a t  matter behaves as a fluid. 

W e  can therefore set up a f l u i d  dynamical model fo r  solving the 

problem of explosive impact. 

ligible. 

Such hypervelocity impacts generate pressures 

W e  w i l l  assume viscosity is neg- 

The jus t i f ica t ion  for t h i s  w i l l  follow later. 

The first s tep  in the analysis is that of defining the 

important physical processes and the associated consti tutive 

equations which should be included i n  the theory. 

of shear strength makes possible the use of simple equations 

fo r  pressure, density, energy and s ta te .  The neglect of thermal 

conduction is jus t i f i ed  by the following order of magnitude 

consideration (Brode and Bjork 1960, Walsh and Tillotson 1963): 

The neglect 

The time for  the duration of hydrodynamic phase of 

interaction is of the order of - where L is the 

length of the project i le  and Vo is the pro jec t i le  

velocity. The thermal diffusion distance x is of the 

order o f , l T ,  4 b e i n g  the diffusivity.  So fo r  impact 

of a meteorite of dimension L = 15 meters with 

.A r = 1 an /sec, 

sion distance to L is of the order of 

L 
vO 

- 

= 15 km/sec, the r a t i o  of diffu- 2 
vo 

Y 
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5 =.=2 x 10- 

of 
On the basis/this fluid-mechanical. model, the problem 

of determining the response of the t a rge t  material becomes 

essent ia l ly  that of solving the general equations of an in- 

viscid, non-conducting f l u i d  which are 

m a s s  conservation ( 14  a # +  pv. 9 = 0 

mrnentum conservation (1-1 

D e  D 
D t  D t  7 - + p - (1) = 0 entropy conservation 

w h e r e  p = density, p = pressure, s = specific entropy, 

(i.e. entropy per u n i t  mass), 

spherical  coordinates may be written as 

3 q = velocity vector which i n  

I,& + V6 + W$, 
A -+ + q . v where t is the time, v is the gradient D 

D t  d t  
operator. 

- = -  

In addition we  need the equation of state of the 

medium which w i l l  be w r i t t e n  at first i n  general form as 

e = ~ ( P , P )  
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- . where e is the qpecific internal enerm, 

It is interest ing t o  note t h a t  the hydrodynamical equa- 

t ions  remain the same i f  character is t ic  length and time are 

scaled because the tenas i n  (1-A) have the same dimensions, 

and the same holds for  ( L B ) ,  (1-C) . Therefore we can say 

the condition of the shock front and the  flow equations are 

homogeneous i n  distance and time. However the inclusion of 

conduction or viscosi ty  would introduce second derivatives 

and scaling would no longer apply. 

from simple scaling has been found negligible (Hennann and 

Jones 1961, Eichelberger and Gehring 1962), which j u s t i f i e s  

our neglect of the viscosi ty  and thennal conduction terms i n  

the problem of irapact. 

By experiment the departure 

Thus we  assume the f l u i d  is inviscid and non heat- 

conducting, and tha t  the motion does not involve any kind of 

physical and chemical change. 

t o  be baratropic having a polytropic form of the equation of 

s t a t e ,  ~ p - ~  = constant. Then under isentropic conditions 

(I-D) becomes e = 

radiat ion is taken i n t o  account. 

Moreover the f lu id  is supposed 

. No energy changes due t o  ( a- l ) - lp  
P 

These di f fe ren t ia l  equations contain s p a t i a l  variables 

as w e l l  as time and the problem of solving them is extremely 

d i f f icu l t .  To date, the only solutions a re  those of Bjork's 

(1958, 1961) which are numerical calculations. 

The general equations may be simplified by assuming v 
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spherical  symmetry. The equations then become: 

Bjork*s calculations (1958, 61) show t h a t  the  meteor- 

i t i c  impact is so rapid that  the t i m e  required for  the compres- 

s ion pressure t o  reach its maximum is negligible. The problem 

may therefore be reduced to t ha t  of an explosion a t  the  center 

of impact. On this basis we fur ther  suppose t h a t  the shape of 
I 

I the pro jec t i le  is immaterial. 

Equation (2-C) implies t h a t  entropy remains constant 

along the  path followed by an element of the f lu id  provided 

I t h a t  it does not traverse a shock front. From equation (2-A) 

1 we can note the spherical  attenuation, an important point of 

I difference between the  cases of spherical  and plane wave. 

(a) Similari ty conditions 

Sedov (1959) has shown t h a t  a simple solution t o  the 

hydrodynamic equatiorrs (2-A, B, C )  ex i s t s  under cer ta in  condi- 

tions. I f  from the given variables and parameters defining 

the i n i t i a l  conditions we can form two and only two dimen- 
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sionless quantit ies,  then time,one of the independent vari- 

ables can be suppressed i n  the equations. In  a blast wave the 

i n i t i a l  conditions are defined by the t o t a l  energy 

the pre-blast pressure 

medium po . In  the equations themselves are the independent 

variables r and t, and the constant . From these six 

Eo , 
po , and the i n i t i a l  density of the 

quantit ies Sedov has shown that there exis t s  the dimension- 

less constant ( r )  and the dimensionless variables ( A  ), ( ‘tl ) . 
Where 

and 

Now for the impact of a large meteorite on the moon, 

with Eo = 10 ergs, ’= 10%/t2/’ and = 10-1 t. Thus 

for  material a t  depths less than lo4 an and times less than 

lo-* sec, h-102Zand therefore A 77 . Under these con- 

di t ions the variable is negligible i n  comparison w i t h  , 

30 

and a l so  the constant since ?f = 6. W e  may therefore proceed 

on the assumption t h a t  self-similari ty w i l l  hold a t  l e a s t  as 

a first approximation. 

< 
This assumption is good fo r  times 

sec., but begins to break dawn a f t e r  t h a t  t i m e .  



* - 7- 

The dimensionless variable A may be simplified t o  

where A, is a constant 

The variable part 

, the value where r = t = 1, 

of A is now defined purely in terms 

of the physical variables r and t since = rt- 2 /5  

Following Courant and Friedrichs (1948) we introduce 

the dimensionless functions of reduced velocity, 

duced density 

t e rna l  energy 

wri t ten t o  exclude r as follows: 

U(s ), re- 

D (  3 ), reduced pressure P ( 5 ) 
G (  5 ) , 

and reduced in- 
_ _ ~ _ _  

The physical variables may now be 

where 

2(a-1) -2 
P/P = t 5 P ( f )  

2 (-1) - 2 
e = t  s 

a = 2 /5  
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. (b) cenditicns at the s h ~ ~ k  front 

A shock f ront  is a discontinuity i n  physical conditions, 

par t icu lar ly  density. From (3-B) it is clear that  any constant 

value of 5 defines the movement of a surface of constant den- 

s i t y  through the medium. It is now necessary t o  ident i fy  one 

of these surfaces, i.e. a certain value of f , w i t h  the shock 

wave surface. 

- 

If the pressure, density, veloci ty  and internal  energy 

of the undisturbed m e d i u m  are p0, pOr u e  

immediately b e h d  p thshockf ron ta repp+ ,  P+ru* panfie* p w e n  

these quant i t ies  are related by the  Rankine-Hugoniot equations: 

and the values 
0’ 0’ 

__ ~ ~~~~ 

P* -Po - - Po us U* 

1 1 e* -e = 1 / 2 ( ~  + p*) (- - 
PO 0 0 

where c is the velocity of sound i n  the medium and us is 

the velocity of propagation of the shock wave. 

= constant can be defined as the shock f ront  i f  equations &A, 

B and C are sat isf ied.  

Thus 5 = go 
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It is convenient t o  work i n  terms of the reduced pressure, 

density, velocity and internal energy w h i c h  are P*, D*, U* and 
* 

G* immediately behind the shock front,  Substituting these 

values the Rankine-Hugoniot equations become: 

D* U*(U - U*) -D*P* = PO 

But in the 
2 Po (< Po(us/a) 

H e r e  the 

e = p p ( p )  where 

(3-C) and (3-I)) a 

blast wave problem under consideration 

form of the equation of state chosen is 

Cp(p) =em . Thus we can write from 

second equation for G* a t  the shock front: 

1 
r l P  

G* = poD*P* Y(p,D) 
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D*(Q - U*) Q 

U* 1 - = 1  -D+ U 

Again from (5-B),  and (5 -C)  since po is small, we f ind 

2 1 D*P* ~a (1 - F) 

2 1 G* = or2 (1 - m) 

Substi tuting (GB,C,D) i n  (6-A) we ge t  

D*(so)  = (i+l) (r-1) I 
Thus it can be seen that a single real value of 5 ,  

ex i s t s  a t  the shock front. The actual value of 5, can be 

found from energy considerations. 

For the fast processes l ike meteoritic impacts we can 

reasonably assume the t o t a l  energy t o  be constant during the 

crater formation. For 5 = so representing the shock a t  

time (t' , the t o t a l  energy of the f lu id  s h e l l  (kinetic + in- 

te rna l )  is given by the volume - integral  of the t o t a l  energy 
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0 

when R s ( t )  is the shock radius a t  t i m e  *t*,  P = internal  
(a-1) P 

energy per gm for  the baratropic medium, 

We know that  for  

r = so t2I5 3 , we ge t  

r = Rs , ?= so , so by substi tuting 

1 

since a t  the shock front  5 = 1. 

The value of so can be evaluated from t h i s  equation, 

Although 5, 
gives the depth of pene t ra t ion  of the shock front, th i s  integral  

is of critical. i n t e re s t  i n  the problem, since it 

cannot immediately be evaluated, It is necessary t o  explore the 

functional form of U, P andD and evaluate the integral  numer- 

ically.  
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Mathematical treatment . 
(a) Self-similar hydro-dynaruical equations: 

The solution of the hydrodynamic equations (2-A,B,C) 

becomes siDllpler on substi tuting eq, (3-A,B,C) i n  t h e m  because 

of the elimination of the variable I t 1  and we are thus led to 

the  following set of ordinary d i f fe ren t ia l  equations instead 

of the partial ones 

(U - -XP (8-B) 1 36 = 1 u(u - u) (u - 1) +(2@ + 3un 

5i /P = fir-1) U (U-1) - (U-a )  (3X-1) -2 [ 1 

where the primes denote different ia t ion with respect t o  s ingle  

independent variable 5 ,  and f3 = a-1 . 
Dividing eq. (8-C) by eq, (8-B) gives 
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a(u) = rU(3a - 1 - 2U) + ( 3  - a) U -2a 

R(U) = U(U - a) (1 - U) 

S ( U )  = 28 + 3UY 

We w i l l  first solve (8-D) and then (8-A) and (8-B). 

It is clear that since no closed form of solution is possible 

numerical methods must be used. 

(b) The I n i t i a l  Conditions: 

Mathematically we w i l l  solve the problem by s ta r t ing  a t  

a known point (U*, D*, P*). These s t a r t i ng  conditions, a t  the 

shock-front, are characterized by the Rankine-Hugoniot equa- 

t ions  which for very high Mach number are 

P* = P us 2 2  
)7+1 



, 

-14 
b e 

On the shock f ront  5 = 5, = constant, and so these equations 

'can -be expressed i n  reduced form by using (3-A,B,cj. 

P* = P (so) = 2a2 (F-1) / (r+1) 

w h e r e  

dit ion.  

a = 2/5 according t o  the t o t a l  energy conservation con- 

Since  the constants a and Y a r e  known we can calcu- 
r 

late the i n i t i a l  values U ( 5 , )  , D ( 5 , )  and P(so)  and can 

proceed w i t h  the  numerical solution of 8-D. The de ta i l s  of 

the numerical solution are given i n  the appendix. Now for a 

medium for which v =  6 the corresponding reduced variables are 

given as D ( S o )  = 1.4, U ( S , )  = 0.114285, P(To) = 0.03265. 

The s t a r t i ng  point for  the solution of eq. (8-D) has 

been fixed as (0.114285, 0.03265). The equations have been 

solved numerically (for de ta i l s  see appendix). The functional 

form of U ( f ) ,  P(s), D ( 5 )  having been thus calculated, the 

energy integral  i n  (7-B) is computed numerically using ShpsonCs  

Rule. So the value of so is determined as follows: 
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1 

1 

energy converted in to  the shock energy. 

But E = f . z mv2 mere f is the f ract ion of *e impact 

The velocity v is supposed to be the ver t ica l  velocity of 

meteorite, and the direction of meteorite velocity is un- 

specified. Experiments have sham t ha t  the crater dimensions 

depend only upon the normal component of the velocity up t o  

the angles of incidence of about 55O (Summers and Charters 

1959). For mathematical convenience we w i l l  choose f = 1. 

(c) L imi t  of Penetration 

W e  want t o  find the depth a t  w h i c h  the penetration 

velocity becomes sonic. It i s  convenient t o  consider the 

r a t i o  between the pressures j u s t  behind and j u s t  i n  f ron t  of 
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the shock in order t o  establish the above mentioned sonic 

*cr i ter ion.  The pressure ra t io  can be derived from the Rankine- 

Hugoniot shock relations as  follows: 

3 = + [ (a-1) + (iT+l) p" 
2 

C Po 

where *c' is the sound speed i n  the undisturbed medium, 

where u* is the particle velocity j u s t  behind the shock front, 

From the above two equations we get  

men u+ C = 1, w e  get a quadratic i n  y (= P*/p2 

2 y 2  - y p +  1) + 4 1  A + [2 - r ( r -d  -I = 0 

(10-c) 
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O n l y  the +ve sign for the root of the quadratic qua- 

t ion  has been kept in order that  it should be in accord with 

shock Mach number M71. 

The l imi t  of penetration of the meteorite (we sha l l  

call it the sonic crater  depth) is determined as follows. 

The pressure behind the shock wave is given by (3-C) 

as 

2 p = t- 6/5 poD* P * s 0  

where l/f= 23.6 (from 10-E) for  a medium with Y Po NOW p =  

X =  6, and po, 

medium = 200 kilobars, corresponding t o  the crushing strength 

of averagium. Now from our definition, 5 applied t o  the 

shock f ront  where 5 = sag = so ; r = f 0 t2I5 . E l i m i k  

ating 't' from the above two equations, we get  

the pressure on the undisturbed side of the 

8/3 [po:*P*] 1'3 
= s o  = 50 

where S r g  is the sonic crater  depth. 
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is known from (9-G), So a l l  the quantities of r ight 

$0 

side of eq. 10-F are known. Therefore I r a  can be computed, 

(d) Jus t i f ica t ion  of Self Similarity 

W e  knuw that the fundamental p r e r e q u i s i t e  for  the 

f l o w  field t o  be self-similar is that the density r a t i o  

across the shock, i,e, D*, should remain constant, This w i l l  

hold good fo r  a small interval of time a f t e r  which the f l aw 

w i l l  no longer be Self similar, Now l e t  us see whether the 

self similar condition holds good i n  the time interval  during 

which the particle velocity decays t o  that of the sound. 

can be expressed i n  terms of Mach number U* Weknuw 

as follcrws: 

The Mach number M of the shock wave corresponding t o  the 

conditions where the velocity of the material has decreased 

t o  c is given by the expression 

(11-A) 

Only the posi t ive sign has been retained in order t ha t  M > 1 ,  

The fie-Gruneisen equation of state for  'Averagium' has 
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. been picked such t ha t  7/  = 6. So we find 

Thus a t  the start the condition is 

when the particle velocity decays t o  sonic velocity, 

and the density r a t i o  across the shock front  

1.37 corresponding closely to the i n i t i a l  value of 1.4. 

M = 3.75, 

, reduces t o  
PO 

So 

the  s imilar i ty  condition is approximately sat isf ied,  because 

the density r a t i o  across the shock remains approximately con- 

stant. 

RESULTS : 

The constants for  the polytropic equation of state 

used in  our calculations have been fixed from extrapolation 

of the experimental r e s u l t s  of Walsh e t  al (1957) and from 

the lcrwer pa r t  of the theoretical  curves of Gilvarry and H i l l  

(1956). The l a t t e r  have used the Thomas-Fermi equation of 

state fo r  these meteorit ic velocit ies,  and the theory is prob 

ably reliable fo r  the high pressures existing before the 

pa r t i c l e  velocity decreases t o  the velocity of sound. 

d i f f e ren t i a l  equations were solved by Runge-Kutta method 

The 
! 
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and the energy integral  evaluated numerically using the 

Simpson rule. (The details are given i n  the appendix. j 
. 

The (U,P) solution curve, (U,f)  and (5,D) curves are 

as sham in figs. 1, 2, 3. W e  f ind a sharp decrease in D 

j u s t  behind the shock front, but it goes gradually t o  zero 

as we move away from the shock front,, 

from f ig .  3 that a t  the position f = 0.15 behind the shock 

It should be noted 

f ront  density is zero. This corresponds t o  a rarefaction or  

cavitation and has been previously noted by Davids and Huang 

(1962). 

An estimate of the sonic crater s i ze  has been made by 

applying the  sonic cr i ter ion of the pressure r a t i o  across the 

shock f ront  which  is equal  to 23.6 for  ?f= 6. 

Le. the pressure of the undisturbed mediumhas been assumed to  

be equal t o  the shear Hsodulus of 'averagium' which has been 

taken as 200 kilobars. 

constant throughout the process,, 

the pro jec t i le  manifests itself as heat, l ight ,  breaking and 

thruwing of the materials, e l a s t i c  and plastic flow, and the 

shock wave. 

input energy to  be converted in to  shock energy, corresponding 

t o  f = 1. 

value because cer ta inly f is less than 1.0, 

The value of po 

The energy has been assumed t o  remain 

The impact kinetic energy of 

For the time being we have supposed the whole 

Further work must be &ne t o  obtain a more realistic 

The par t ic le  velocity represents the rate of penetration 

of the meteorite, the sonic radius, therefore, is the depth a t  

which  the meteorite has been decelerated t o  the speed of sound. 
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A t  t h i s  condition the pressure 

approximately 20 tines greater 

material of the moon surface. 

c 

j u s t  behind the shock front  is 

than the shear s t rength of the 

L e t  us examine haw the f lu id  

model should behave when the par t ic le  velocity has become equal 

t o  the sound velocity, 

The pressure exerted on the shocked s ide  of the front 

is 23 times the pressure on the undisturbed side. 

as a very rough approximation that the self-similari ty r e  

mains val id  a f t e r  the shock wave decays i n t o  the sound wave 

then according t o  (3-C) , the t i m e  required f o r  the pressure t o  

decay t o  the shear modulus would be almost 1 2  times the sonic 

t h e  interval,  A t  this time the cra te r  radius would be 2.7 

times the sonic crater depth. 

f law f i e l d  remains similar and the medium remains f lu id  through- 

out. 

mre close t o  the upper l imit  than the laver l imi t  because 

100% efficiency is assumed i n  the self similar calculations. 

W e  can see tha t  a t  the sonic depth, the difference i n  

If we suppose 

This would be t rue only i f  the 

It is nevertheless a useful approximation and is probably 

the internal  energies of the shocked and undisturbed media is 

16 x l o l o  ergs/- which is almost 15 times the l a t en t  heat of 

fusion of iron. 

state a t  t h i s  time, 

decay and this becomes quite dominant a t  large radii .  

sonic depth the energy difference across the shock is about 

1.6 x 10l1 ergs/gm w h i c h  is s u f f i c i e n t  t o  m e l t  the luna r  material. 

However, a f t e r  penetrating further by a factor of 2,?, the energy 

So the shocked medium is def in i te ly  i n  a f l u i d  

Spherical divergence is a cause of shock 

A t  the 
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is no longer able t o  fuse and m e l t  the material. Somewhere 

between these limits, the liquid hypervelocity equations f a i l .  

It is convenient t o  take this change of mechanism a t  the sonic 

t 

crater depth. 

So f r o m  now onward the hydrodynamic model w i l l  no longer 

be used. The solid-solid, shock-solid, and the liquid-solid 

impact should be suff ic ient ly  val id  approximations. Cracking, 

crushing and disturbance of the lunar material under bri t t le 

conditions (Bowden and Brunton 1961) w i l l  be considered i n  a 

later report. 

The penetration depth of the meteorite, defined as the 

sonic depth, var ies  from 4 t o  6 meteorite diameters. This 

confirms Baldwinas (1962) prediction regarding the formation 

of the central  mountain peaks, 

The sonic crater depths have been calculated for  various 

masses of meteors ranging from l o 4  t o  1014 kgm (Hawkins 1963) 

and for the meteorite velocity between 15 to 75  km/sec, The 

p lo t s  for  the impact velocity vs, sonic crater depth and the 

meteorit ic mass VS. the  sonic crater depth are shown i n  Figs. 

(4, 5, 6). The slope! of this s t r a igh t  l i ne  is .68 which agrees 

w i t h  2/3rd puwer l a w  of Eichelberger and Gehring (1962) o b  

tained by curve f i t t i n g ,  and with Walsh and Tillotson (1963) 

re la t ion  p / d  = k ( vo / )6 when p is crater penetration depth, 
0 

d the pro jec t i le  dimension, Vo the pro jec t i le  velocity, 

K and Co being constant and the value of 6 is as  follcrws: 
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6 = .61 - + ,02 fo r  the velocity range lo7 t o  2.5 x lo7 cm/sec 

(c 

6 6 = .62 - + .03 for  the velocity range lo6 t o  4 x 10 d s e c  

These values are not i n  bad agreement with our calculation of 

6 068. 

The f a c t  that the self-similari ty approximation for  de- 

termining the sonic crater depth holds f a i r l y  good, is c o r r o b  

orated by the velocity-depth prof i les  for  the meteor crater,  

Arizona, as calculated by Bjork (1961). For a meteorite mass 

12,000 tons and an impact velocity 30 km/sec, the sonic crater 

depth for  iron-tuff impact, using Olshaker and Bjork' (1962) 

scaling laws ,  is found t o  be 43.7 meters by our calculations, 

corresponding t o  Bjork's 57 meters. 

sum of sonic depth and projecti le height, which w a s  taken as 

1 2  meters. 

This la t ter  value is a 

So for  the ear ly  phases our resu l t s  s e e m  t o  be i n  good 

agreement with other methods. 

peaks are supposed t o  be formed during the earlier stages when 

The lunar cen t r a l  mountain 

the particle velocity i s  suff ic ient  t o  m e l t  and vaporize the 

material by a hypervelocity explosion. 

In our calculations we considered the Grheisen 's  con- 

s t a n t  t o  be the same for  a l l  impact ve loc i t ies  and this 

assumption might be questioned. 

in to  account the increase i n  the crater depth due t o  l a t e r  

fusion or  vaporization of the medium caused by the shock wave 

Moreover we have not taken 
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after the pro jec t i le  has slowed down t o  a velocity less than 

* the  speed of sound. 

Concluding Remarks : 

W e  have dealt with a symmetric problem of a point re- 

lease of energy i n  a given medium. There is need fo r  introduc- 

t i o n  of two spatial coordinates i n  our hydrodynamical equations. 

The s imilar i ty  assumption restricts the equation of 

state t o  a special  form, and i n  re la t ive ly  weaker stages of 

shock propagation t h i s  assumption is poor. Therefore i n  the 

later stages, the shock propagation is character is t ical ly  

non-similar. So quasi-similarity technique (Oshima 1960) 

f o r  solving the problem should be applied ( R a e  and Kirchner 

1963.) 

It is necessary tha t  the velocity corresponding t o  

energy conservation ( in  explosion case) and the momentum 

conservation should be matched and used i n  quasi s i m i l a r i t y  

calculations. 
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Appendix (A): 

The polytropic form of the equation of state which has 

been chosen is amenable t o  the s imi la r i ty  solution of the 

fluid-dynamicdl equations. 

for the earlier stages of the impact. Son-similar solution 

would give the proper description a t  a later time. 

interested in the time internal during which  the particle 

veloci ty  becomes sonic, we have fixed the value of Y =  6,  

The s imi la r i ty  solution holds good 

As we are 

= 200 kilobars. So for  such a medium the  i n i t i a l  Po = 4, PO 
values have been fixed as 

D (  5,) = 1.4. 

start the solution of the d i f fe ren t ia l  equations, 

P (5,) = 0.03265, u ( s 0 )  = 0.114285, 

These Values can give us the i n i t i a l  point t o  

The d i f fe ren t ia l  Eq. (8-D) 

has s ingular i t ies  a t  (P = 0 ,  U = o), (P = 0, U = a), (P = 0,  U = 1) 

and a t  the shock surface where P = 0,03265, U = 0.114285, The 

equation becomes singular where - 
Davids and Calvit, 1962, 

I n  order that the above equation be amenable t o  Rung- 

For de t a i l s  see dP - o 

Kutta method, (Romanelli 1959) the i n i t i a l  points t o  start 

numerical calculations should not be a singular point. B u t  

the  i n i t i a l  conditions fixed are those fo r  the shock point; so 

the Runge-Kutta method cannot be applied as it is, One way of 

solving the equation is to start  from P = 0,  U = a and de- 

- 
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termine the limiting value of slopes (Davids and Calvit, 1962). 

a-i 
* The values of the slope a r e a  , 0,  . we put for  a = 4, 

the slope = -0.2. 

numerical integration can be taken as U = ,399, P = 0.0002 

So the s tar t ing point for the Runge-Kutta 

and we can go back i n  steps till we h i t  the shock-point. Then 

we can fix the i n i t i a l  conditions f o r  the other two equations. 
dP But we can evaluate the slope a t  the shock points 

by taking limits and then exclude the unstable zone and f i x  

up the s t a r t i ng  point by l i n e a r  extrapolation using the sui table  

l imiting value of the slope. The l imi t  can be evaluated as 

follcms: 

when (Us,Ps) represents the shock point of Lim 
u +us m'z 
P 3 P s  

P-U plane. Now applying L'Hopital's Rule a t  the shock front 

Lim Lim (12-A) j m = +  

From this we get  

2 A X  + B X + C = o  

dP where: X = 

(12-B) 
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A I S  

C = Lim --., - [m/dU + PdQ/dU] P 

The solution of this quadratic equation gives two real 

roots for 2 ( =  6, and the roots are X = 0,284165 and X = -0.206069, 

indicating a discontinuity at the shock front which satisfies 

the physical condition of a discontinuity in velocity, pressure, 

hence density, etc, 

Again for other equations 

Applying L@Hopitalls Rule 

= -3.1569 at the shock point (Us,Ps) 

(12-c) 

3 can be taken as 1 at the shock, hence the suitable 

starting point for nmrical solution of the above differential 
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equation, can be computed using this limiting value of the 

slope 0 

The solution of the third differential equation ncm be- 

comes a straightforward problem of numerical analysis. 

The computations were performed on IBM 1620 machine a t  

the Boston University oomputing Center. The details of the 

programs appear in Appendix Bo 
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C PQOGRAM 2 
C COMPU T A T I O V  O F  S O N I C  CRATER D E P T H  

2117 F O R M A T ( 2 8 H  A C O U S I T I C  V E L O C I T Y ( C V / S E C ) = E 1 6 . 2 )  
209  F O R M A T ( 4 5 H  DECAY T I Y E  V E L O C I T Y ( C M )  S O N I C  R A L ) I U S ( C : q ) )  
207  F ~ R Y A T ( F 1 2 0 7 ~ E 1 6 o 2 1 E 1 8 . 4 )  
2n6 F O R l J A T ( E l 8 0 4 ~ 2 F 3 ~ 1 ~ 2 E 1 6 . 4 )  
2qR F O Q M A T ( 2 1 H  M A S '  r)F ' J E T r 3 R ( G M 5 ) = E 1 5 o 4 )  
2 0 5  F O R M A T ( 3 4 H  C O M P U T A T I O N  OF S r 3 N I C  C R A T E R  O E P T d )  

P Q I N T  235  
R F A D  2 0 h , S U V r G , R H 0 9 4 9 V  
A L = 9 . 4  
U = Z o * A L / ( G + l o )  
D = ( C + l * ) / ( C - l . )  
P R = 2 . * 0 1 6 * ( G - l *  ) / ( G + l e ) * + Z  
~ q = ~ . + ( i n .  )*+ii 
n0  3 0 1  N = l r l l  
O = ( A / l C o ) + ( l " o ) * * N  
P R I N T  2 3 8 9 0  
D R I N T  299  
00 3 9 1  I K = 1  95 
R T Y = I I (  
Y = R I Y * V  
7 7  = Q * X + X  / ( RHO* 1 
Z I = ( Z Z ) * * ( 1 . / 5 . )  
T =  ( D * P R * P H @ * Z I  *Z  I 
T T = ( T ) * + ( 5 . / 6 0 )  
UU=U+ZI*((TT)r*(-3./5.)) 
R C = ( Z I )  * ( ( T ) * * ( l o / 3 0 ) )  

/ ( 2 3 e 5 9 P S )  

P R T N T  2 3 7 9 T T 9 X 9 R C  
3 3 1  C O N T I N U E  

P R I N T  2 l n q U U  
5 T O P  
F Y D  

3 2 2 8 o 2 3 8 0 E - 0 5 6 0 0 4 . 3  l * J C ! E  07  1 e 5 0 E  0 6  
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Fig. 5 Log-Log Plot for the Impact Velocity vs.  Sonic Depth for 
Different Masses of the Meteorite 



Fig.  6 Log-Log Plot for the mass of the 
Meteorite vs. the sonic crater depth 


